Left dorsal premotor cortex and supramarginal gyrus complement each other during rapid action reprogramming.

نویسندگان

  • Gesa Hartwigsen
  • Sven Bestmann
  • Nick S Ward
  • Saskia Woerbel
  • Claudia Mastroeni
  • Oliver Granert
  • Hartwig R Siebner
چکیده

The ability to discard a prepared action plan in favor of an alternative action is critical when facing sudden environmental changes. We tested whether the functional contribution of left supramarginal gyrus (SMG) during action reprogramming depends on the functional integrity of left dorsal premotor cortex (PMd). Adopting a dual-site repetitive transcranial magnetic stimulation (rTMS) strategy, we first transiently disrupted PMd with "off-line" 1 Hz rTMS and then applied focal "on-line" rTMS to SMG while human subjects performed a spatially precued reaction time (RT) task. Effective on-line rTMS of SMG but not sham rTMS of SMG increased errors when subjects had to reprogram their action in response to an invalid precue regardless of the type of preceding off-line rTMS. This suggests that left SMG primarily contributes to the on-line updating of actions by suppressing invalidly prepared responses. On-line rTMS of SMG additionally increased RTs for correct responses in invalidly precued trials, but only after off-line rTMS of PMd. We infer that off-line rTMS caused an additional dysfunction of PMd, which increased the functional relevance of SMG for rapid activation of the correct response, and sensitized SMG to the disruptive effects of on-line rTMS. These results not only provide causal evidence that left PMd and SMG jointly contribute to action reprogramming, but also that the respective functional weight of these areas can be rapidly redistributed. This mechanism might constitute a generic feature of functional networks that allows for rapid functional compensation in response to focal dysfunctions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint Contribution of Left Dorsal Premotor Cortex and Supramarginal Gyrus to Rapid Action Reprogramming

BACKGROUND The rapid adaptation of actions to changes in the environment is crucial for survival. We previously demonstrated a joint contribution of left dorsal premotor cortex (PMd) and left supramarginal gyrus (SMG) to action reprogramming. However, we did not probe the contribution of PMd to the speed and accuracy of action reprogramming and how the functional relevance of PMd changes in the...

متن کامل

Brain networks involved in viewing angry hands or faces.

Most neuropsychological research on the perception of emotion concerns the perception of faces. Yet in everyday life, hand actions are also modulated by our affective state, revealing it, in turn, to the observer. We used functional magnetic resonance imaging (fMRI) to identify brain regions engaged during the observation of hand actions performed either in a neutral or an angry way. We also as...

متن کامل

fMRI investigation of unexpected somatosensory feedback perturbation during speech

Somatosensory feedback plays a critical role in the coordination of articulator movements for speech production. In response to unexpected resistance to lip or jaw movements during speech, fluent speakers can use the difference between the somatosensory expectations of a speech sound and the actual somatosensory feedback to adjust the trajectories of functionally relevant but unimpeded articula...

متن کامل

A mediating role of the auditory dorsal pathway in selective adaptation to speech: a state-dependent transcranial magnetic stimulation study.

In addition to sensory processing, recent neurobiological models of speech perception postulate the existence of a left auditory dorsal processing stream, linking auditory speech representations in the auditory cortex with articulatory representations in the motor system, through sensorimotor interaction interfaced in the supramarginal gyrus and/or the posterior part of the superior temporal gy...

متن کامل

The human dorsal stream adapts to real actions and 3D shape processing: a functional magnetic resonance imaging study.

We tested whether the control of real actions in an ever-changing environment would show any dependence on prior actions elicited by instructional cues a few seconds before. To this end, adaptation of the functional magnetic resonance imaging signal was measured while human participants sequentially grasped three-dimensional objects in an event-related design, using grasps oriented along the sa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 32 46  شماره 

صفحات  -

تاریخ انتشار 2012